model { for(i in 1:N){ logit(mu_M[i]) <- alpha*x[i] M[i] ~ dbern(mu_M[i]) mu_y[i]<- c*x[i]+beta*M[i] y[i] ~ dnorm(mu_y[i],prec2) logit(mu_M1[i]) <- alpha*(x[i]+deltax) M1[i] ~ dbern(mu_M1[i]) mu_y1[i]<- c*(x[i]+deltax)+beta*M[i] mu_y2[i]<- c*x[i] mu_y3[i]<- c*x[i]+beta ie[i]<-(mu_M1[i]-mu_M[i])/deltax*(mu_y3[i]-mu_y2[i])/deltam de[i]<-(mu_y1[i]-mu_y[i])/deltax te[i]<-ie[i]+de[i] } alpha ~ dnorm(0.0,0.01) beta ~ dnorm(0.0,0.01) c ~ dnorm(0.0,0.001) var2 ~ dgamma(1,0.1) prec2 <-1/var2 }